Separable First-Order Differential Equations

• Separable Differential Equation: $\frac{dy}{dx} = g(x)h(y)$

• Example:
$$\frac{dy}{dx} = xy + 2x$$

- 1) Separate variables. 2) Integrate. 0
- Don't forget equilibrium solution!

First-Order Autonomous Ordinary Differential Equations: $\frac{dy}{dx} = f(y)$

- Slope does not depend on x.
- All horizontal lines are isoclines.
- Integral curves can be shifted horizontally and they will still be an integral curve
- Solve as a separable first-order differential equation.
- Critical point: y values such that f(y) = 0.
- **Equilibrium solutions:** 0
 - Where slope is zero.
 - Occur at critical points. If $f(y_a) = 0$, then $y = y_a$ is an equilibrium solution
 - Serve as "boundaries" of integral curves (assuming f(y) is differentiable).
 - Determine end behavior.
 - Stable equilibrium solution: Solutions tend to converge to this solution
 - Unstable equilibrium solution: Solutions diverge from this solution
 - Semi-stable equilibrium solution: On one side, solutions tend to converge to this solution. On the other side, solutions tend to diverge.

• Exponential Growth and Decay

- $\frac{dy}{dx} = ky$ Solution: $y = Ce^{kx}$
- **Applications:**
 - Newton's Law of Cooling •
 - Radioactive Decay
 - Continuously compounded interest
 - Discharging a capacitor
- Logistical Growth and Decay

•
$$\frac{dy}{dx} = ky\left(1 - \frac{y}{L}\right)$$
 Solution (use partial fractions): $y = \frac{L}{1 + Ce^{-kx}}$

Applications: Population growth with carrying capacity

Homogeneous Differential Equations:

- If you substitute tx and ty in for x and y in the differential equation, then 0 $f(tx,ty) = t^n f(x,y)$
- Example: $\frac{dy}{dx} = \frac{3x + 2y}{5x}$
- dy = vdx + xdv (product rule) Use these substitutions. 0 y = vx
- o Substitute into original differential equation. Solve as separable.

3) Solve for y.